Thermally-Enhanced High Power RF LDMOS FET 190 W, 28 V, 1805 - 1880 MHz

Description

The PTAB182002FC is a 190-watt LDMOS FET intended for use in multi-standard cellular power amplifier applications in the 1805 to 1880 MHz frequency band. Features include input and output matching, high gain and thermally-enhanced package with earless flange. Manufactured with Infineon's advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

PTAB182002FC
Package H-37248-4

Features

- Asymmetric Doherty design
- Main: $\mathrm{P}_{1 \mathrm{~dB}}=70 \mathrm{~W}$ Typ
- Peak: $\mathrm{P}_{1 \mathrm{~dB}}=120 \mathrm{~W}$ Typ
- Broadband internal matching
- Typical two-carrier WCDMA performance at $1842 \mathrm{MHz}, 28 \mathrm{~V}$ (Doherty configuration)
- Average output power $=44.6 \mathrm{dBm}$
- Linear Gain $=15.5 \mathrm{~dB}$
- Efficiency $=46 \%$
- IMD = -25 dBc
- Increased negative gate-source voltage range for improved performance in Doherty amplifiers
- Integrated ESD protection
- Capable of handling 3:1 VSWR @ 30 V, 50 W (average) output power (one-carrier WCDMA signal, 10 dB PAR, Doherty test fixture)
- Pb-free and RoHS-compliant

RF Characteristics

Two-carrier WCDMA Measurements (tested in Infineon Doherty test fixture)
$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GSPK}}=\left(\mathrm{V}_{\mathrm{GS}}\right.$ at $\left.\mathrm{I}_{\mathrm{DQ}}=900 \mathrm{~mA}\right)-1.80 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=520 \mathrm{~mA}$, POUT $=29 \mathrm{~W}$ avg., $f_{1}=1870 \mathrm{MHz}, f_{2}=1880 \mathrm{MHz}, 7.5 \mathrm{~dB}$ PAR

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	$G_{p s}$	14.5	15.5	-	dB
Drain Efficiency	η_{D}	42	44	-	$\%$
Intermodulation Distortion	IMD	-	-26.5	-24	dBc

All published data at $T_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise indicated
ESD: Electrostatic discharge sensitive device—observe handling precautions!

PTAB182002FC

DC Characteristics

Characteristic	Conditions	Symbol	Min	Typ	Max	Unit
Drain-source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$	$\mathrm{~V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	V
Drain Leakage Current	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	1.0	$\mu \mathrm{~A}$
	$\mathrm{~V}_{\mathrm{DS}}=63 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	10.0	$\mu \mathrm{~A}$
On-state Resistance (main)	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$	$\mathrm{R}_{\mathrm{DS}(o n)}$	-	0.15	-	Ω
On-state Resistance (peak)	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$	$\mathrm{R}_{\mathrm{DS}(o n)}$	-	0.09	-	Ω
Operating Gate Voltage (main)	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=520 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{GS}}$	2.5	3.0	3.5	V
Operating Gate Voltage (peak)	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=0 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{GS}}$	0.7	1.1	1.5	V
Gate Leakage Current	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GSS}}$	-	-	1.0	$\mu \mathrm{~A}$

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	V
Gate-source Voltage	V_{GS}	-6 to +10	V
Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance	(main, $\mathrm{T}_{\text {CASE }}=70^{\circ} \mathrm{C}, 80 \mathrm{~W}$ CW class AB$)$	$\mathrm{R}_{\theta J C}$	0.86
	(peak, $\mathrm{T}_{\text {CASE }}=70^{\circ} \mathrm{C}, 110 \mathrm{~W}$ CW class C$)$	$\mathrm{R}_{\theta \mathrm{JC}}$	0.64

Ordering Information

Type and Version	Order Code	Package and Description	Shipping
PTAB182002FC V1 R0	PTAB182002FCV1R0XTMA1	H-37248-4, ceramic open-cavity, earless flange	Tape \& Reel, 50 pcs
PTAB182002FC V1 R250	PTAB182002FCV1R250XTMA1	H-37248-4, ceramic open-cavity, earless flange	Tape \& Reel, 250 pcs

Typical Performance (data taken in a production Doherty test fixture)

Typical Performance (cont.)

Load Pull Performance

Main Side Load Pull Performance - Pulsed CW signal: $12 \mu \mathrm{sec}, 10 \%$ duty cycle; $28 \mathrm{~V}, 530 \mathrm{~mA}$

Class AB		$\mathrm{P}_{1 \mathrm{~dB}}$									
		Max Output Power					Max PAE				
$\begin{aligned} & \text { Freq } \\ & {[\mathrm{MHz}]} \end{aligned}$	Zs Ω	Zl ת	Gain [dB]	Pout [dBm]	Pout [W]	PAE \%	Z1 Ω	Gain [dB]	Pout [dBm]	Pout [W]	PAE \%
1805	5.9 - j9.5	$2.8-j 5.4$	17.4	50.50	112	56.0	6.1-j6.3	19.7	48.63	73	67.0
1842	7.5 - j9.7	$2.7-j 5.7$	17.2	50.26	106	54.4	$6.9-\mathrm{j} 4.8$	20.0	48.08	64	66.2
1880	9.5-j10.3	$3.0-j 5.7$	17.8	50.28	107	56.1	6. 7- j5.2	20.1	48.38	69	66.3

Peak Side Load Pull Performance - Pulsed CW signal: $12 \mu \mathrm{sec}, 10 \%$ duty cycle; $28 \mathrm{~V}, 10 \mathrm{~mA}$

Class C		$\mathrm{P}_{1 \mathrm{~dB}}$									
		Max Output Power					Max PAE				
Freq [MHz]	Zs Ω	Zl ת	$\begin{aligned} & \text { Gain } \\ & \text { [dB] } \end{aligned}$	Pout [dBm]	Pout [W]	PAE \%	Zl ת	Gain [dB]	$\begin{aligned} & \mathrm{POUT} \\ & \text { [dBm] } \end{aligned}$	Pout [W]	PAE \%
1805	11.0-j6.1	$1.3-\mathrm{j} 5.5$	15.7	52.43	175	54.4	$2.8-\mathrm{j} 4.5$	17.7	50.60	115	70.2
1842	8.0 - j4.8	1.3-j5.8	16.2	52.38	173	54.7	$2.7-\mathrm{j} 4.7$	17.8	50.50	112	69.0
1880	$6.7-$ - 2.4	1.4 - j6.0	16.8	52.33	171	54.9	$2.7-\mathrm{j} 4.8$	18.0	50.40	110	68.5

PTAB182002FC

Reference Circuit

Reference circuit input schematic for $f=1880 \mathrm{MHz}$

PTAB182002FC

Reference Circuit (cont.)

Reference circuit output schematic for $f=1880 \mathrm{MHz}$
Reference Circuit

DUT	PTAB182002FC
Test Fixture Part No.	LTA/PTAB182002FC
PCB	Rogers 4350, $0.762 \mathrm{~mm}[.030$ " $]$ thick, 2 oz. copper, $\varepsilon_{r}=3.66$
Find Gerber files for this test fixture on the Infineon Web site at (http://www.infineon.com/rfpower)	

Reference Circuit (cont.)

Reference Circuit Assembly

Electrical Characteristics at 1880 MHz

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Input			
TL101	$0.029 \lambda, 28.26 \Omega$	$W=3.81, L=2.67$	$W=150, L=105$
$\begin{aligned} & \text { TL102, TL103, } \\ & \text { TL105, TL159, } \\ & \text { TL162, TL163 } \end{aligned}$	$0.014 \lambda, 28.26 \Omega$	$\mathrm{W} 1=3.81, \mathrm{~W} 2=3.81, \mathrm{~W} 3=1.27$	$\mathrm{W} 1=150, \mathrm{~W} 2=150, \mathrm{~W} 3=50$
TL104	$0.020 \lambda, 28.26 \Omega$	$W=3.81, L=1.83$	$W=150, L=72$
TL106	$0.032 \lambda, 51.05 \Omega$	$W=1.63, L=3.05$	$W=64, L=120$
TL107	$0.091 \lambda, 51.05 \Omega$	$W=1.63, L=8.64$	$W=64, L=340$
TL109	$0.022 \lambda, 76.77 \Omega$	$W=0.76, L=2.16$	$W=30, L=85$
TL110, TL130	$0.026 \lambda, 76.77 \Omega$	$W=0.76, L=2.54$	$W=30, L=100$
TL111	$0.012 \lambda, 12.71 \Omega$	$W=10.03, L=1.02$	$W=395, L=40$
TL112	$0.009 \lambda, 12.71 \Omega$	$\mathrm{W} 1=10.03, \mathrm{~W} 2=10.03, \mathrm{~W} 3=0.76$	$\mathrm{W} 1=395, \mathrm{~W} 2=395, \mathrm{~W} 3=30$
TL114	$0.014 \lambda, 23.02 \Omega$	$W=4.95, L=1.27$	$W=195, L=50$
TL115	$0.098 \lambda, 12.71 \Omega$	$W=10.03, L=8.59$	$\mathrm{W}=395, \mathrm{~L}=338$
TL117, TL146	$0.013 \lambda, 51.05 \Omega$	$W=1.63, L=1.27$	$W=64, L=50$
TL120	$0.066 \lambda, 51.05 \Omega$	$W=1.63, L=6.27$	$W=64, L=247$
TL121	$0.038 \lambda, 51.05 \Omega$	$W=1.63, L=3.56$	$W=64, L=140$
TL122	$0.060 \lambda, 51.05 \Omega$	$W=1.63, L=5.69$	$W=64, L=224$
TL123	$0.009 \lambda, 11.33 \Omega$	$\mathrm{W} 1=11.43, \mathrm{~W} 2=11.43, \mathrm{~W} 3=0.76$	$\mathrm{W} 1=450, \mathrm{~W} 2=450, \mathrm{~W} 3=30$
TL126	$0.144 \lambda, 76.77 \Omega$	$W=0.76, L=14$	$W=30, L=551$
TL127	$0.037 \lambda, 51.05 \Omega$	$W=1.63, L=3.45$	$W=64, L=136$
TL128	$0.013 \lambda, 51.05 \Omega$	$W=1.63, L=1.19$	$W=64, L=47$
TL129	$0.055 \lambda, 76.77 \Omega$	$W=0.76, L=5.38$	$W=30, L=212$
TL131	$0.012 \lambda, 11.33 \Omega$	$W=11.43, L=1.02$	$W=450, L=40$
TL132	$0.055 \lambda, 38.04 \Omega$	$W=2.54, L=5.08$	$W=100, L=200$
TL133	$0.102 \lambda, 11.33 \Omega$	$W=11.43, L=8.89$	$W=450, L=350$
TL134	$0.031 \lambda, 76.77 \Omega$	$W=0.76, L=2.97$	$W=30, L=117$
TL135	$0.040 \lambda, 51.05 \Omega$	$W=1.63, L=3.81$	$W=64, L=149$
TL137	$0.023 \lambda, 51.05 \Omega$	$W=1.63, L=2.16$	$W=64, L=85$
TL139	$0.043 \lambda, 51.05 \Omega$	$W=1.63, L=4.06$	$W=64, L=160$
TL141	$0.118 \lambda, 51.05 \Omega$	$\mathrm{W}=1.63, L=11.18$	$W=64, L=440$
TL142, TL143, TL 154,TL164	$0.013 \lambda, 76.77 \Omega$	$\mathrm{W} 1=0.76, \mathrm{~W} 2=0.76, \mathrm{~W} 3=1.27$	$\mathrm{W} 1=30, \mathrm{~W} 2=30, \mathrm{~W} 3=50$
TL144	$0.010 \lambda, 76.77 \Omega$	$W=0.76, L=0.97$	$W=30, L=38$

table continued on next page

PTAB182002FC

Reference Circuit (cont.)

Electrical Characteristics at 1880 MHz

Transmission
Line

Input (cont.)	Electrical Characteristics	Dimensions: mm	Dimensions: mils
TL149	$0.078 \lambda, 28.26 \Omega$	$\mathrm{~W}=3.81, \mathrm{~L}=7.09$	$\mathrm{~W}=150, \mathrm{~L}=279$
$\mathrm{TL152}$	$0.009 \lambda, 28.26 \Omega$	$\mathrm{~W}=3.81, \mathrm{~L}=0.81$	$\mathrm{~W}=150, \mathrm{~L}=32$
$\mathrm{TL153}$	$0.192 \lambda, 76.77 \Omega$	$\mathrm{~W}=0.76, \mathrm{~L}=18.62$	$\mathrm{~W}=30, \mathrm{~L}=733$
TL156	$0.054 \lambda, 76.77 \Omega$	$\mathrm{~W}=0.76, \mathrm{~L}=5.23$	$\mathrm{~W}=30, \mathrm{~L}=206$
TL157	$0.024 \lambda, 76.77 \Omega$	$\mathrm{~W}=0.76, \mathrm{~L}=2.31$	$\mathrm{~W}=30, \mathrm{~L}=91$
TL158, TL165	$0.042 \lambda, 28.26 \Omega$	$\mathrm{~W}=3.81, \mathrm{~L}=3.81$	$\mathrm{~W}=150, \mathrm{~L}=150$
TL160	$0.013 \lambda, 28.26 \Omega$	$\mathrm{~W}=3.81, \mathrm{~L}=1.19$	$\mathrm{~W}=150, \mathrm{~L}=47$
TL161	$0.025 \lambda, 28.26 \Omega$	$\mathrm{~W}=3.81, \mathrm{~L}=2.31$	$\mathrm{~W}=150, \mathrm{~L}=91$

Output

TL201, TL267	$0.014 \lambda, 28.26 \Omega$	$\mathrm{~W} 1=3.81, \mathrm{~W} 2=3.81, \mathrm{~W} 3=1.27$	$\mathrm{~W} 1=150, \mathrm{~W} 2=150, \mathrm{~W} 3=50$
TL202, TL251, TL262	$0.014 \lambda, 42.19 \Omega$	$\mathrm{~W} 1=2.18, \mathrm{~W} 2=2.18, \mathrm{~W} 3=1.27$	$\mathrm{~W} 1=86, \mathrm{~W} 2=86, \mathrm{~W} 3=50$
TL203, TL265	$0.099 \lambda, 28.26 \Omega$	$\mathrm{~W}=3.81, \mathrm{~L}=9.04$	$\mathrm{~W}=150, \mathrm{~L}=356$
TL204	$0.002 \lambda, 11.04 \Omega$	$\mathrm{~W}=11.76, \mathrm{~L}=0.13$	$\mathrm{~W}=463, \mathrm{~L}=5$
TL205	$0.015 \lambda, 42.19 \Omega$	$\mathrm{~W}=2.18, \mathrm{~L}=1.42$	$\mathrm{~W}=86, \mathrm{~L}=56$
TL206	$0.109 \lambda, 42.19 \Omega$	$\mathrm{~W}=2.18, \mathrm{~L}=10.16$	$\mathrm{~W}=86, \mathrm{~L}=400$
TL208	$0.123 \lambda, 11.04 \Omega$	$\mathrm{~W}=11.76, \mathrm{~L}=10.72$	$\mathrm{~W}=463, \mathrm{~L}=422$
TL209	$0.120 \lambda, 8.6 \Omega$	$\mathrm{~W}=15.52, \mathrm{~L}=10.39$	$\mathrm{~W}=611, \mathrm{~L}=409$
TL210	$0.017 \lambda, 25.19 \Omega$	$\mathrm{~W}=4.42, \mathrm{~L}=1.52$	$\mathrm{~W}=174, \mathrm{~L}=60$
TL211, L260	$0.057 \lambda, 25.19 \Omega$	$\mathrm{~W}=4.42, \mathrm{~L}=5.13$	$\mathrm{~W}=174, \mathrm{~L}=202$
TL214	$0.005 \lambda, 25.19 \Omega$	$\mathrm{~W}=4.42, \mathrm{~L}=0.43$	$\mathrm{~W}=174, \mathrm{~L}=17$
TL216	$0.083 \lambda, 31.13 \Omega$	$\mathrm{~W}=3.35, \mathrm{~L}=7.62$	$\mathrm{~W} 1=132, \mathrm{~L}=300$
TL217	$0.048 \lambda, 31.13 \Omega$	$\mathrm{~W} 1=3.35, \mathrm{~W} 2=3.35, \mathrm{~W} 3=4.42$	$\mathrm{~W} 1=463, \mathrm{~W} 2=463, \mathrm{~W} 3=86$
TL218	$0.025 \lambda, 11.04 \Omega$	$\mathrm{~W} 1=11.76, \mathrm{~W} 2=11.76, \mathrm{~W} 3=2.18$	$\mathrm{~W}=174, \mathrm{~L}=658$
TL220	$0.184 \lambda, 25.19 \Omega$	$\mathrm{~W}=4.42, \mathrm{~L}=16.71$	$\mathrm{~W}=125, \mathrm{~L}=306$
TL221	$0.084 \lambda, 32.41 \Omega$	$\mathrm{~W}=3.18, \mathrm{~L}=7.77$	$\mathrm{~W}=72, \mathrm{~L}=100$
TL222, TL239	$0.027 \lambda, 47.41 \Omega$	$\mathrm{~W}=1.83, \mathrm{~L}=2.54$	$\mathrm{~W}=72, \mathrm{~L}=125$
TL223, TL224	$0.034 \lambda, 47.41 \Omega$	$\mathrm{~W}=1.83, \mathrm{~L}=3.18$	$\mathrm{~W}=72, \mathrm{~L}=50$
TL225, TL242	$0.014 \lambda, 47.41 \Omega$	$\mathrm{~W}=1.83, \mathrm{~L}=1.27$	$\mathrm{~W}=64, \mathrm{~L}=120$
TL230	$0.032 \lambda, 51.05 \Omega$	$\mathrm{~W}=1.63, \mathrm{~L}=3.05$	$\mathrm{~W}=64, \mathrm{~L}=59$
TL231	$0.016 \lambda, 51.05 \Omega$	$\mathrm{~W}=1.63, \mathrm{~L}=1.5$	

Reference Circuit (cont.)

Electrical Characteristics at 1880 MHz

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Output (cont.)			
TL234	$0.011 \lambda, 8.6 \Omega$	$\mathrm{W} 1=15.52, \mathrm{~W} 2=15.52, \mathrm{~W} 3=0.91$	$\mathrm{W} 1=611, \mathrm{~W} 2=611, \mathrm{~W} 3=36$
TL237	$0.051 \lambda, 70.38 \Omega$	$\mathrm{W}=0.91, \mathrm{~L}=4.93$	$\mathrm{W}=36, \mathrm{~L}=194$
TL238	$0.079 \lambda, 70.38 \Omega$	$\mathrm{W}=0.91, \mathrm{~L}=7.62$	$\mathrm{W}=36, \mathrm{~L}=300$
TL240	$0.049 \lambda, 89.14 \Omega$	$\mathrm{W}=0.53, \mathrm{~L}=4.78$	$\mathrm{W}=21, \mathrm{~L}=188$
TL241	$0.002 \lambda, 8.6 \Omega$	$\mathrm{W}=15.52, \mathrm{~L}=0.13$	$\mathrm{W}=611, \mathrm{~L}=5$
TL245	$0.156 \lambda, 28.26 \Omega$	$\mathrm{W}=3.81, \mathrm{~L}=14.27$	W = 150, L = 562
$\begin{aligned} & \text { TL246, TL263, } \\ & \text { TL268 } \end{aligned}$	$0.013 \lambda, 70.38 \Omega$	$\mathrm{W} 1=0.91, \mathrm{~W} 2=0.91, \mathrm{~W} 3=1.27$	$\mathrm{W} 1=36, \mathrm{~W} 2=36, \mathrm{~W} 3=50$
TL247	$0.127 \lambda, 70.38 \Omega$	$\mathrm{W}=0.91, \mathrm{~L}=12.24$	$\mathrm{W}=36, \mathrm{~L}=482$
TL250	$0.198 \lambda, 28.26 \Omega$	$\mathrm{W}=3.81, \mathrm{~L}=18.11$	$W=150, L=713$
TL253	$0.038 \lambda, 42.19 \Omega$	$\mathrm{W}=2.18, \mathrm{~L}=3.58$	$\mathrm{W}=86, \mathrm{~L}=141$
TL254	$0.0003 \lambda, 31.13 \Omega$	$\mathrm{W}=3.35, \mathrm{~L}=0.03$	$W=132, L=1$
TL256	$0.028 \lambda, 31.13 \Omega$	$\mathrm{W}=3.35, \mathrm{~L}=2.54$	$\mathrm{W}=132, \mathrm{~L}=100$
TL257	$0.062 \lambda, 31.13 \Omega$	$\mathrm{W}=3.35, \mathrm{~L}=5.69$	$\mathrm{W}=132, \mathrm{~L}=224$
TL264	$0.021 \lambda, 70.38 \Omega$	$\mathrm{W}=0.91, \mathrm{~L}=2.03$	$\mathrm{W}=36, \mathrm{~L}=80$
TL266	$0.015 \lambda, 70.38 \Omega$	$\mathrm{W}=0.91, \mathrm{~L}=1.42$	$\mathrm{W}=36, \mathrm{~L}=56$
TL269	$0.086 \lambda, 42.19 \Omega$	$\mathrm{W}=2.18, \mathrm{~L}=8$	$\mathrm{W}=86, \mathrm{~L}=315$
TL270	$0.027 \lambda, 42.19 \Omega$	$\mathrm{W}=2.18, \mathrm{~L}=2.51$	$\mathrm{W}=86, \mathrm{~L}=99$

PTAB182002FC

Reference Circuit (cont.)

Reference circuit assembly diagram (not to scale)

Components Information

Component			Description	
Input			Suggested Supplier	
C101, C108	Chip capacitor, $0.1 \mu \mathrm{~F}$	Pemet	C120C104K5RACTU	
C102, C110	Capacitor, $100 \mu \mathrm{~F}$	Panasonic	EEE-FP1V101AP	
C103, C109	Capacitor, $10 \mu \mathrm{~F}$	Taiyo Yuden	UMK325C7106MM-T	
C104, C105, C106, C107	Chip capacitor, 24 pF	ATC	ATC100A240JW150XB	
R101	Resistor, 50Ω	Anaren	C16A5024	
R102, R103	Resistor, 10Ω	Panasonic	ERJ-8GEYJ100V	
R104, R105	Resistor, 1000Ω	Panasonic	ERJ-8GEYJ102V	
U1 / S1	90° RF directional coupler	Anaren	X3C19P1-05S	
Output				
C201, C203, C204, C205	Chip capacitor, 24 pF	ATC	ATC100A240JW150XB	
C202, C207, C208, C209	Capacitor, $10 \mu \mathrm{~F}$	Taiyo Yuden	UMK325C7106MM-T	
C206, C210	Capacitor, $220 \mu \mathrm{~F}$	Panasonic	EEEFP1V221AP	

PTAB182002FC

Pinout Diagram (top view)

Lead connections for PTAB182002FC

See next page for Package Outline Specifications

Package Outline Specifications

Find the latest and most complete information about products and packaging at the Infineon Internet page (http://www.infineon.com/rfpower)

Revision History: 2016-06-09
Previous Revision: 2013-10-17, Data Sheet

Page	Subjects (major changes since last revision)
2	updated ordering code to R0

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
(highpowerRF@infineon.com)
To request other information, contact us at: +1 8774653667 (1-877-GO-LDMOS) USA or +14087760600 International

Edition 2016-06-09

Published by

 Infineon Technologies AG85579 Neubiberg, Germany

©2011 Infineon Technologies AG

All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

