
PC-I2C-DEV
with MDIO and SPI support

Software Developer User Manual

FDI Future Designs, Inc.
Your Development Partner

Information in this document is provided solely to enable the use of Future Designs, Inc. products. FDI
assumes no liability whatsoever, including infringement of any patent or copyright. FDI reserves the right
to make changes to these specifications at any time, without notice. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without
the express written permission of Future Designs, Inc. 2702 Triana Blvd SW, Huntsville, AL 35805-4074.

 2004 Future Designs, Inc. All rights reserved.

Microsoft, MS-DOS, Windows, Microsoft Word are registered trademarks of Microsoft Corporation.
Other brand names are trademarks or registered trademarks of their respective owners.

P:\PC PRoducts\PC-I2C\Docs\PC-I2C-DEV User Manual 3_E.doc, Revision 3.E, 3/11/2004 1:01 PM
Printed in the United States of America

 i

Table of Contents

1. PC-I2C-DEV Overview..1
2. PC-I2C-DEV Installation ...1
3. Using the PC-I2C-DEV in a VC++ Project ..2
4. Three Example VC++ Projects..4
5. General Purpose Routines..5

5.1 DriverAgentOpen...5
5.2 DaOpenDevice ..5
5.3 DaCloseDevice..5
5.4 DriverAgentClose ..5
5.5 SetupHardware ...6
5.6 DetectHardware ..6

6. I2C Routines ...7
6.1 I2cReadSCL..7
6.2 I2cDropSCL...7
6.3 I2cRaiseSCL ...7
6.4 I2cReadSDA..7
6.5 I2cDropSDA ..7
6.6 I2cRaiseSDA...8
6.7 I2cGenerateStartCondition..8
6.8 I2cGenerateRepeatedStartCondition ..8
6.9 I2cGenerateStopCondition ..8
6.10 I2cWriteByte ..8
6.11 I2cReadByte..9
6.12 I2cWriteDevice ..9
6.13 I2cReadDevice ..9
6.14 I2cReadMemory ..10
6.15 I2cWriteMemory ..10
6.16 I2cReadMemory16 ..11
6.17 I2cWriteMemory16 ..12

7. MDIO Routines ...13
7.1 MdioReadMDC..13
7.2 MdioDropMDC...13
7.3 MdioRaiseMDC ...13
7.4 MdioReadMDIO...13
7.5 MdioDropMDIO ...13
7.6 MdioRaiseMDIO ..14
7.7 MdioSendBits ..14
7.8 MdioReadBits ..14
7.9 MdioSendPreamble...14
7.10 Mdio22ReadWord ...15
7.11 Mdio22WriteWord..15
7.12 Mdio45ReadWord ...16
7.13 Mdio45WriteWord..16

 ii

8. SPI Routines...17
8.1 SpiReadDIN ..17
8.2 SpiDropDOUT ...17
8.3 SpiRaiseDOUT..17
8.4 SpiReadCLK..17
8.5 SpiDropCLK ..17
8.6 SpiRaiseCLK...18
8.7 SpiDropCS ..18
8.8 SpiRaiseCS...18
8.9 SpiShiftReg ...18
8.10 SpiClockWait ...19

9. System Definitions ..20
9.1 Function Return Values...20
9.2 nLoopsPerUsec Determination..20
9.3 NLoopsPerUsec Estimated Values ...21

 iii

1. PC-I2C-DEV Overview
The PC-I2C-DEV Software Developer Kit contains all of the tools necessary to

access and control the PC-I2C hardware from a custom application. The PC-I2C-
DEV can be used with Visual C/C++ or any other programming language that
supports the use of DLLs. (Note that the PC-I2C-DEV was generated and tested
using Microsoft Visual C/C++ 6.0, but there is no reason that it will not work in all
Microsoft Windows software development environments such as Borland C/C++,
Microsoft Visual Studio, or any programming software which utilizes DLL.)

The PC-I2C-DEV consists of the following:
• A complete PC-I2C-KIT which includes

o An FDI Installation and Support CDROM
o PC-I2C Board with PCF8582 EEPROM
o 4-pin connecting cable (18” length)
o PC-I2C-KIT Quick Start Manual
o Registration form for the PC-I2C parallel port adapter

• PC-I2C-DEV Software Developer Installation CDROM
o Three user configurable DLL examples

• PC-I2C-DEV Software Developer User Manual

2. PC-I2C-DEV Installation
Insert the PC-I2C-DEV Installation CDROM into the proper drive. If the setup

program does not automatically run, open the PC-I2C-DEV Installation CDROM
from “My Computer” and run “setup.exe” by double-clicking on it. Follow the
instructions on the subsequent screens. When the installation is completed, the
computer will have to be re-booted in order for the installation to complete.

The Setup.exe program installs the files needed for the standard operation of
the PC-I2C-KIT and those needed to add PC-I2C functionality to a custom
application. The required .DLL and .SYS files will be copied to the appropriate
system directories and the required modifications to the registry will be made.
The remaining files will be copied into the following subdirectories (Assuming that
the default directories were used during the installation procedure).

• C:\Program Files\FDI\PC-I2C – This directory contains the standard PC-

I2C application and help files.
• C:\Program Files\FDI\PC-I2C\DDF – This directory contains the Device

Descriptor Files (DDF) used by the standard PC-I2C-KIT software. See the
PC-I2C software on-line help for details.

• C:\Program Files\FDI\PC-I2C\SDF – This directory contains the Sequence
Descriptor Files (DDF) used by the standard PC-I2C-KIT software. See the
PC-I2C software on-line help for details.

 1

• C:\Program Files\FDI\PC-I2C\DEV – This directory contains the files that
must be used by your custom application to access the PC-I2C hardware.
This subdirectory also contains the electronic version of this user manual.

• C:\Program Files\FDI\PC-I2C \DLL_Example – This directory contains a
Microsoft VC++ example project that can be used to verify that the PC-I2C
hardware and software are functioning properly.

• C:\Program Files\FDI\PC-I2C \DTMF_Interface – This directory contains a
Microsoft VC++ example project that will interface with any PCD3311C or
PCD3312C compatible musical-tone generator.

• C:\Program Files\FDI\PC-I2C \LCD_Interface – This directory contains a
Microsoft VC++ example project that will interface with any PCF21xxC
family compatible LCD Driver.

3. Using the PC-I2C-DEV in a VC++ Project
In order to add the functionality of the PC-I2C-DEV to a custom application,

you must perform the following steps. Note that you can use the example project
located in the DLL_Example subdirectory as a reference for implementing these
steps.

1. Make sure that the PC-I2C-DEV installation program was run from the

installation disk. This program installs the software and makes the
modifications to the registry that are needed for proper operation of the PC-
I2C-DEV.

2. Copy the following files from the \DEV subdirectory (C:\Program

Files\FDI\PC-I2C\DEV if the default installation location was used) to the
directory that contains the source code for your custom application.

a. Pport_Proxy.lib
b. DriverAgent.lib
c. Pport_Proxy.h
d. DriverAgent.h
e. Remap.h

3. In the VC++ environment, add the .lib files to your project by opening the
“Project” menu, selecting “Add to Project”, and clicking on “Files”. Select
the following files from the dialog box and click “OK”.

a. Pport_Proxy.lib
b. DriverAgent.lib

4. Add the following line to each of the files in your project that will access the
PC-I2C software:
#include “Pport_Proxy.h”

 2

5. Create a global variable that will hold the handle of the PC-I2C device as
follows:
HCLIENTDEVICE g_hPCI2C = NULL;

6. During your application’s initialization, add the following PC-I2C kernel

initialization code:
DEVSTATUS devStatus = DEVSTATUS_SUCCESS ;
if (API_SUCCESS(devStatus=DriverAgentOpen()))
{
 // Open the "PPort" device
 devStatus=DaOpenDevice(_TEXT("PPort"), &g_hPCI2C, NULL);
}

7. Setup the PC-I2C hardware.

SetupHardware(CPU_SPEED, PULSE_WIDTH, PORT_ADDR);

8. Call the PC-I2C-DEV routines as needed to perform the desired tasks.

9. When your application terminates, release the handle to the PC-I2C
resources.
// Release the "PCI2C" handle if it exists
if (g_hPCI2C) DaCloseDevice(g_hPCI2C) ;
// Close the Kernel mode driver
DriverAgentClose() ;

 3

4. Three Example VC++ Projects
The subdirectory “DLL_Example” contains an example project created with the

Microsoft VC++ 6.0 MFC application wizard. The example project shows how to
interface a custom application to the PC-I2C-DEV software to access the on-
board PCF8582C I2C EEPROM.

The subdirectory “DTMF_Interface” contains an example project created with
the Microsoft VC++ 6.0 MFC application wizard. The example project shows how
to interface a custom application to the PC-I2C-DEV software to access a
PCD3312P DTMF Generator.

The subdirectory “LCD_Interface” contains an example project created with
the Microsoft VC++ 6.0 MFC application wizard. The example project shows how
to interface a custom application to the PC-I2C-DEV software to access a
PCF21xxC family LCD Driver.

 4

5. General Purpose Routines
These routines are used to initialize, setup, and terminate the PC-I2C DLL

functionality. They are usually called only once by the custom application.

5.1 DriverAgentOpen
Prototype: DEVSTATUS DriverAgentOpen(void)
Function: This routine is called to start the Kernel Mode driver that controls

the parallel port. It should be called once during the custom
application’s initialization.

Parameters: None
Returns: None

5.2 DaOpenDevice
Prototype: DEVSTATUS DaOpenDevice(

PCSTR pszName,
HCLIENTDEVICE *phDevice,
PCLIENTDEVICEINFO pClientInfo
)

Function: This routine is called to get a handle to the Kernel Mode driver’s
parallel port resource. It should be called once during the custom
application’s initialization after calling DriverAgentOpen().

Parameters: pszName
 phDevice
 pClientInfo
Returns: None

5.3 DaCloseDevice
Prototype: DEVSTATUS DaCloseDevice(HCLIENTDEVICE *hDevice)
Function: This routine is called to release the handle to the Kernel Mode

driver’s parallel port resource. It should be called once during the
custom application’s shutdown procedure before calling
DriverAgentClose().

Parameters: hDevice
Returns: None

5.4 DriverAgentClose
Prototype: void DriverAgentClose(void)
Function: This routine is called to terminate the Kernel Mode driver that

controls the parallel port. It should be called once during the
custom application’s shutdown procedure.

 5

Parameters: None
Returns: None

5.5 SetupHardware
Prototype: int SetupHardware(int nLoopsPerUsec, int n50Percent, int

nPort)
Function: This routine is called to set up the parameters to be used by the

PC-I2C hardware. It should be called once during the custom
application’s initialization. The parameters nLoopsPerUsec and
n50Percent are used to determine the effective bus speed. The
value of nLoopsPerUsec can be calculated using the code in the
example or can be estimated from the chart that is provided later
in this manual.

Parameters: nLoopsPerUsec – Number of loops the processor executes in a
uSec.

 n50Percent – Fifty times the desired clock period in uSec. For
example, a 100kHz clock would yield 500 (50*1/100,000)

 nPort – The hardware address of the Parallel Port that is being
used by PC-I2C (e.g. 0x378, 0x3bc, etc.)

Returns: Always returns a 0x00

5.6 DetectHardware
Prototype: int DetectHardware(void)
Function: This routine is called to detect the presence of the PC-I2C

hardware on the parallel port. This routine can be called at any
time.

Parameters: None
Returns: Returns TRUE if the board was detected and FALSE if it was not

detected.

 6

6. I2C Routines
These routines are used to support the I2C bus protocol. There are routines

included to perform low level bit manipulation as well as routines to send entire
messages across the I2C bus.

6.1 I2cReadSCL
Prototype: int I2cReadSCL(void)
Function: This routine returns the current state of the SCL line of the I2C

interface.
Parameters: None
Returns: “0” if SCL is low, “1” if SCL is high

6.2 I2cDropSCL
Prototype: int I2cDropSCL(void)
Function: This routine forces the SCL line of the I2C interface low.
Parameters: None
Returns: Always returns I2C_NO_ERROR

6.3 I2cRaiseSCL
Prototype: int I2cRaiseSCL(void)
Function: This routine forces the SCL line of the I2C interface high.
Parameters: None
Returns: Always returns I2C_NO_ERROR

6.4 I2cReadSDA
Prototype: int I2cReadSDA(void)
Function: This routine returns the current state of the SDA line of the I2C

interface.
Parameters: None
Returns: “0” if SDA is low, “1” if SDA is high

6.5 I2cDropSDA
Prototype: int I2cDropSDA(void)
Function: This routine forces the SDA line of the I2C interface low.
Parameters: None
Returns: Always returns I2C_NO_ERROR

 7

6.6 I2cRaiseSDA
Prototype: int I2cRaiseSDA(void)
Function: This routine forces the SDA line of the I2C interface high.
Parameters: None
Returns: Always returns I2C_NO_ERROR

6.7 I2cGenerateStartCondition
Prototype: int I2cGenerateStartCondition(void)
Function: This routine generates a start condition on the I2C interface.
Parameters: None
Returns: Always returns I2C_NO_ERROR

6.8 I2cGenerateRepeatedStartCondition
Prototype: int I2cGenerateRepeatedStartCondition(void)
Function: This routine generates a repeated start condition on the I2C

interface.
Parameters: None
Returns: Always returns I2C_NO_ERROR

6.9 I2cGenerateStopCondition
Prototype: int I2cGenerateStopCondition(void)
Function: This routine generates a stop condition on the I2C interface.
Parameters: None
Returns: Always returns I2C_NO_ERROR

6.10 I2cWriteByte
Prototype: int I2cWriteByte(int nByte)
Function: This function transmits a single byte to the I2C bus. It assumes

that the bus is available, that the proper Start Condition has
previously been generated, and that the slave device has been
properly addressed.

Parameters: nByte – The byte to write to the I2C interface.
Returns: Returns I2C_NO_ACK if the slave device does not acknowledge

the byte. Otherwise it returns I2C_NO_ERROR.

 8

6.11 I2cReadByte
Prototype: int I2cReadByte(int *nByte, int nLast)
Function: This function reads a single byte from the I2C bus. It assumes

that the bus is available, that the proper Start Condition has
previously been generated, and that the slave device has been
properly addressed. If the parameter nLast is FALSE, an ACK is
generated after the byte is transmitted. Otherwise, no ACK is
generated. The result of the read is saved in *nByte.

Parameters: *nByte – This is a pointer to the location that receives the byte
read from the I2C bus.

 nLast – This parameter determines if an ACK should be
generated after the byte is transmitted. If nLast is FALSE, an
ACK is generated. If nLast is TRUE, no ACK is generated.

Returns: Always returns I2C_NO_ACK. Also updates the value pointed to
by nByte with the byte read from the I2C bus.

6.12 I2cWriteDevice
Prototype: int I2cWriteDevice(int nDeviceAddress,

int nCount,
int nBuffer[],
int nRegWidth = 1)

Function: This function is used to write a complete message to the I2C
bus. It handles generation of the Start and Stop Conditions as
well as properly addressing the Slave device.

Parameters: nDeviceAddress – The I2C bus address of the slave device.
 nCount – The number of words to write to the slave device.
 nBuffer[] – A buffer that contains the bytes to write to the slave

device.
 nRegWidth – The width of each register and thus each word.
Returns: Returns I2C_NO_ACK if the slave device fails to acknowledge

any of the bytes that are transmitted. Otherwise returns
I2C_NO_ERROR.

6.13 I2cReadDevice
Prototype: int I2cReadDevice(int nDeviceAddress,

int nCount,
int nBuffer[],
int nRegWidth = 1)

Function: This function is used to read a complete message from the I2C
bus. It handles generation of the Start and Stop Conditions as
well as properly addressing the Slave device. It also generates
an ACK for every byte transmitted except for the final one. (This
is a common method of terminating a read process on the I2C
bus.)

 9

Parameters: nDeviceAddress – The I2C bus address of the slave device.
 nCount – The number of words to read from the slave device.
 nBuffer[] – A buffer that receives the bytes read from the slave

device.
 nRegWidth – The width of each register and thus each word.
Returns: Returns I2C_NO_ACK if the slave device fails to acknowledge its

address. Otherwise returns I2C_NO_ERROR. It also updates the
contents of nBuffer with the read results.

6.14 I2cReadMemory
Prototype: int I2cReadMemory(

int nDeviceAddress,
int nMemoryAddress,
int nCount,
int nBuffer[],
int nRegWidth = 1
)

Function: This function reads a block of memory from an I2C memory
device using 11-bit internal addressing. It handles the generation
of the Start and Stop Conditions as well as properly addressing
the Slave device. It also handles setting up the proper address to
read and the proper ACK sequence for the read procedure.

Parameters: nDeviceAddress – The I2C bus address of the slave device.
 nMemoryAddress – The address within the slave device to

begin reading.
 nCount – The number of words to read from the slave device. (A

maximum of 0x100 bytes can be read at a time.)
 nBuffer[] – A buffer that receives the bytes read from the slave

device.
 nRegWidth – The width of each register and thus each word.
Returns: Returns I2C_NO_ACK if the slave device fails to acknowledge its

address or the memory address to read. Returns
I2C_COUNT_TOO_BIG if a number larger than 0x100 is read in
nCount. Otherwise returns I2C_NO_ERROR. It also updates the
contents of nBuffer with the read results.

6.15 I2cWriteMemory
Prototype: int I2cWriteMemory(

int nDeviceAddress,
int nMemoryAddress,
int nCount,
int nBuffer[],
int nRegWidth = 1
)

 10

Function: This function writes a block of memory to an I2C memory device
using 11-bit internal addressing. It handles the generation of the
Start and Stop Conditions as well as properly addressing the
Slave device. It also handles setting up the proper address to
write.

Parameters: nDeviceAddress – The I2C bus address of the slave device.
 nMemoryAddress – The address within the slave device to

begin writing.
 nCount – The number of words to write to the slave device. (A

maximum of 0x10 bytes can be written at a time.)
 nBuffer[] – A buffer that contains the bytes to write to the slave

device.
 nRegWidth – The width of each register and thus each word.
Returns: Returns I2C_NO_ACK if the slave device fails to acknowledge

any of the bytes written to it. Returns I2C_COUNT_TOO_BIG if a
number larger than 0x10 is read in nCount. Otherwise returns
I2C_NO_ERROR.

6.16 I2cReadMemory16
Prototype: int I2cReadMemory16(

int nDeviceAddress,
int nMemoryAddress,
int nCount,
int nBuffer[],
int nRegWidth = 1
)

Function: This function reads a block of memory from an I2C memory
device using 19-bit internal addressing. It handles the generation
of the Start and Stop Conditions as well as properly addressing
the Slave device. It also handles setting up the proper address to
read and the proper ACK sequence for the read procedure.

Parameters: nDeviceAddress – The I2C bus address of the slave device.
 nMemoryAddress – The address within the slave device to

begin reading.
 nCount – The number of words to read from the slave device. (A

maximum of 0x10000 bytes can be read at a time.)
 nBuffer[] – A buffer that receives the bytes read from the slave

device.
 nRegWidth – The width of each register and thus each word.
Returns: Returns I2C_NO_ACK if the slave device fails to acknowledge its

address or the memory address to read. Returns
I2C_COUNT_TOO_BIG if a number larger than 0x10000 is read
in nCount. Otherwise returns I2C_NO_ERROR. It also updates
the contents of nBuffer with the read results.

 11

6.17 I2cWriteMemory16
Prototype: int I2cWriteMemory16(

int nDeviceAddress,
int nMemoryAddress,
int nCount,
int nBuffer[],
int nRegWidth = 1
)

Function: This function writes a block of memory to an I2C memory device
using 19-bit internal addressing. It handles the generation of the
Start and Stop Conditions as well as properly addressing the
Slave device. It also handles setting up the proper address to
write.

Parameters: nDeviceAddress – The I2C bus address of the slave device.
 nMemoryAddress – The address within the slave device to

begin writing.
 nCount – The number of words to write to the slave device. (A

maximum of 0x10 bytes can be written at a time.)
 nBuffer[] – A buffer that contains the bytes to write to the slave

device.
 nRegWidth – The width of each register and thus each word.
Returns: Returns I2C_NO_ACK if the slave device fails to acknowledge

any of the bytes written to it. Returns I2C_COUNT_TOO_BIG if a
number larger than 0x10 is read in nCount. Otherwise returns
I2C_NO_ERROR.

 12

7. MDIO Routines

7.1 MdioReadMDC
Prototype: int MdioReadMDC(void)
Function: This routine returns the current state of the MDC line of the

MDIO interface.
Parameters: None
Returns: “0” if MDC is low, “1” if MDC is high

7.2 MdioDropMDC
Prototype: int MdioDropMDC(void)
Function: This routine forces the MDC line of the MDIO interface low.
Parameters: None
Returns: Always returns I2C_NO_ERROR

7.3 MdioRaiseMDC
Prototype: int MdioRaiseMDC(void)
Function: This routine forces the MDC line of the MDIO interface high.
Parameters: None
Returns: Always returns I2C_NO_ERROR

7.4 MdioReadMDIO
Prototype: int MdioReadMDIO(void)
Function: This routine returns the current state of the MDIO line of the

MDIO interface.
Parameters: None
Returns: “0” if MDIO is low, “1” if MDIO is high

7.5 MdioDropMDIO
Prototype: int MdioDropMDIO(void)
Function: This routine forces the MDIO line of the MDIO interface low.
Parameters: None
Returns: Always returns I2C_NO_ERROR

 13

7.6 MdioRaiseMDIO
Prototype: int MdioRaiseMDIO(void)
Function: This routine forces the MDIO line of the MDIO interface high.
Parameters: None
Returns: Always returns I2C_NO_ERROR

7.7 MdioSendBits
Prototype: int MdioSendBits(

 int nData,
 int nCount
)

Function: This routine transfers any number of bits (up to 32) on the
MDIO interface by placing the bit on the bus and
transitioning the clock.

Parameters: nData – The data pattern to transmit. Bits are transmitted
starting with the least significant bit.

 nCount – Number of bits to transmit.
Returns: Always returns I2C_NO_ERROR

7.8 MdioReadBits
Prototype: int MdioReadBits(

 int *nData,
 int nCount
)

Function: This routine reads any number of bits (up to 32) from the
MDIO interface.

Parameters: nData – Value that receives the result of the read operation.
 nCount – Number of bits to read.
Returns: Always returns I2C_NO_ERROR. Also updates the value of

nData with the bits read from the bus.

7.9 MdioSendPreamble
Prototype: int MdioSendPreamble(void)
Function: This routine transmits 32 high bits on the MDIO interface to

create the preamble that is required by the MDIO
specification.

Parameters: None
Returns: Always returns I2C_NO_ERROR.

 14

7.10 Mdio22ReadWord
Prototype: int Mdio22ReadWord(
 int nPhyAddr,

 int nRegAddr,
 int *nData
)

Function: This routine reads a single 32bit word from the MDIO
(Clause 22) interface. The resultant word is returned in the
variable nData.

Parameters: nPhyAddr – This value is the address of the slave device on
the MDIO bus.

 nRegAddr – This is the address of the register within the
slave device that is to be read.

 nData – This is the location that will receive the results of the
read operation.

Returns: Always returns I2C_NO_ERROR. Also updates the value of
nData with the value read from the bus.

7.11 Mdio22WriteWord
Prototype: int Mdio22WriteWord(

int nPhyAddr,
int nRegAddr,
int nData

)
Function: This routine writes a single 32bit word to the MDIO (Clause

22) interface.
Parameters: nPhyAddr – This value is the address of the slave device on

the MDIO bus.
 nRegAddr – This is the address of the register within the

slave device that is to be written.
 nData – This is the data that will be written to the slave

device.
Returns: Always returns I2C_NO_ERROR.

 15

7.12 Mdio45ReadWord
Prototype: int Mdio45ReadWord(

 int nPortAddr,
 int nDevAddr,
 int nRegAddr,
 int *nData
)

Function: This routine reads a single 32bit word from the MDIO
(Clause 45) interface. The resultant word is returned in the
variable nData.

Parameters: nPortAddr – This value is the address of the slave device
on the MDIO bus.

 nDevAddr – This is the device page address of the slave
device.

 nRegAddr – This is the address of the register within the
slave device that is to be read.

 nData – This is the location that will receive the results of the
read operation.

Returns: Always returns I2C_NO_ERROR. Also updates the value of
nData with the value read from the bus.

7.13 Mdio45WriteWord
Prototype: int Mdio45WriteWord(

 int nPortAddr,
 int nDevAddr,
 int nRegAddr,
 int nData
)

Function: This routine writes a single 32bit word to the MDIO (Clause
24) interface.

Parameters: nPortAddr – This value is the address of the slave device
on the MDIO bus.

 nDevAddr – This is the device page address of the slave
device.

 nRegAddr – This is the address of the register within the
slave device that is to be written.

 nData – This is the data that will be written to the slave
device.

Returns: Always returns I2C_NO_ERROR.

 16

8. SPI Routines

8.1 SpiReadDIN
Prototype: int SpiReadDIN(void)
Function: This routine returns the current state of the DIN line of the

SPI interface.
Parameters: None
Returns: “0” if DIN is low, “1” if DIN is high

8.2 SpiDropDOUT
Prototype: int SpiDropDOUT(void)
Function: This routine forces the DOUT line of the SPI interface low.
Parameters: None
Returns: Always returns I2C_NO_ERROR

8.3 SpiRaiseDOUT
Prototype: int SpiRaiseDOUT(void)
Function: This routine forces the DOUT line of the SPI interface high.
Parameters: None
Returns: Always returns I2C_NO_ERROR

8.4 SpiReadCLK
Prototype: int SpiReadCLK(void)
Function: This routine returns the current state of the CLK line of the

SPI interface.
Parameters: None
Returns: “0” if CLK is low, “1” if CLK is high

8.5 SpiDropCLK
Prototype: int SpiDropCLK(void)
Function: This routine forces the CLK line of the SPI interface low.
Parameters: None
Returns: Always returns I2C_NO_ERROR

 17

8.6 SpiRaiseCLK
Prototype: int SpiRaiseCLK(void)
Function: This routine forces the CLK line of the SPI interface high.
Parameters: None
Returns: Always returns I2C_NO_ERROR

8.7 SpiDropCS
Prototype: int SpiDropCS(void)
Function: This routine forces the CS line of the SPI interface low.
Parameters: None
Returns: Always returns I2C_NO_ERROR

8.8 SpiRaiseCS
Prototype: int SpiRaiseCS(void)
Function: This routine forces the CS line of the SPI interface high.
Parameters: None
Returns: Always returns I2C_NO_ERROR

8.9 SpiShiftReg
Prototype: int SpiShiftReg(

int OutGoing[],
int WordWidth,
int InComing[],
int UseCS
)

Function: This routine takes the value from OutGoing[] and shifts it out
on DOUT while storing the value shifted in from DIN to
Incoming[].

Parameters: int OutGoing[] – This value is the command to be shifted
out to the target device.
int WordWidth – This value is the width of the command in
bits.
int InComing[] – This value is the data shifted in from DIN
during transmission of the command.
int UseCS – This value is the polarity of the CS line during
transmission. “0” signifies that CS should be high during
transmission. “1” signifies that CS should be low during
transmission. “2” signifies that CS is not applicable.

Returns: Always returns I2C_NO_ERROR. The information shifted in
on DIN is stored in InComing[].

 18

8.10 SpiClockWait
Prototype: int SpiClockWait(

BOOL WaitForValue,
int WaitClocks,
int UseCS
)

Function: This routine forces the CS line of the SPI interface high. The
CS line is held in this state until a logic value matching
WaitForValue is read on DIN. When this is read, or
SpiClockWait has waited an amount of time equal to
WaitClocks number of clocks, the function will return
I2C_NO_ERROR.

Parameters: BOOL WaitForValue – The logic value on the DIN line
which specifies that SpiClockWait should return.
int WaitClocks – The number of clocks to count before
SpiClockWait should give up and return regardless of the
value on the DIN line.
int UseCS – This value is the polarity of the CS line during
transmission. “0” signifies that CS should be high during
transmission. “1” signifies that CS should be low during
transmission. “2” signifies that CS is not applicable.

Returns: Always returns I2C_NO_ERROR

 19

9. System Definitions
This section contains miscellaneous system definitions and notes for using the

PC-I2C-DEV.

9.1 Function Return Values
The following values can be returned by the Developer Kit routines. They are

returned by the SPI and MDIO routines as well as the I2C routines. These values
are declared in the Pport_Proxy.h file.

• I2C_NO_ERROR – Functions return this value if no error occurs. This is
the standard return value.

• I2C_NO_ACK – Functions return this value when the slave device fails to
acknowledge a byte that was transferred over the bus.

• I2C_COUNT_TOO_BIG – Functions return this value when the amount of
data to move is too large for the internal buffers.

9.2 nLoopsPerUsec Determination
The value of the parameter nLoopsPerUsec, which is used by the

SetupHardware() routine, is used to specify the processing speed of the host
computer. This value can be calculated directly, using the code snippet below, or
can be estimated from values given in the table.

//
// Determine nLoopsPerUsec value
//
LARGE_INTEGER Freq, Start, Finish;
_int64 HPAverage = 0;
_int64 HPDiff = 0;
_int64 HPusec = 0;

int nCount = 0;
QueryPerformanceFrequency(&Freq);

 // Loop 10 times

for (int j=0; j<10; j++)
{

QueryPerformanceCounter(&Start);
 for (int i=0;i<0x00800000;i++) nCount += i;
 QueryPerformanceCounter(&Finish);
 HPDiff = Finish.QuadPart-Start.QuadPart;
 HPAverage += (HPDiff/10);
 }
 HPusec = ((Freq.QuadPart/1000)*0x20ce)/HPAverage;

 20

 21

9.3 NLoopsPerUsec Estimated Values
The following table gives some estimated values for the parameter

nLoopsPerUsec, which is used by the SetupHardware() routine. The values will
give adequate results for most applications. If more precise timing is required,
use the code snippet above to calculate the value at run time.

Processor Type nLoopsPerUsec
Pentium 400 MHz 100
Pentium 700 MHz 220
Pentium 1.1 GHz 275
Athlon 1.2 GHz 305

	Software Developer User Manual
	Table of Contents
	1. PC-I2C-DEV Overview
	2. PC-I2C-DEV Installation
	3. Using the PC-I2C-DEV in a VC++ Project
	4. Three Example VC++ Projects
	5. General Purpose Routines
	5.1 DriverAgentOpen
	5.2 DaOpenDevice
	5.3 DaCloseDevice
	5.4 DriverAgentClose
	5.5 SetupHardware
	5.6 DetectHardware

	6. I2C Routines
	6.1 I2cReadSCL
	6.2 I2cDropSCL
	6.3 I2cRaiseSCL
	6.4 I2cReadSDA
	6.5 I2cDropSDA
	6.6 I2cRaiseSDA
	6.7 I2cGenerateStartCondition
	6.8 I2cGenerateRepeatedStartCondition
	6.9 I2cGenerateStopCondition
	6.10 I2cWriteByte
	6.11 I2cReadByte
	6.12 I2cWriteDevice
	6.13 I2cReadDevice
	6.14 I2cReadMemory
	6.15 I2cWriteMemory
	6.16 I2cReadMemory16
	6.17 I2cWriteMemory16

	7. MDIO Routines
	7.1 MdioReadMDC
	7.2 MdioDropMDC
	7.3 MdioRaiseMDC
	7.4 MdioReadMDIO
	7.5 MdioDropMDIO
	7.6 MdioRaiseMDIO
	7.7 MdioSendBits
	7.8 MdioReadBits
	7.9 MdioSendPreamble
	7.10 Mdio22ReadWord
	7.11 Mdio22WriteWord
	7.12 Mdio45ReadWord
	7.13 Mdio45WriteWord

	8. SPI Routines
	8.1 SpiReadDIN
	8.2 SpiDropDOUT
	8.3 SpiRaiseDOUT
	8.4 SpiReadCLK
	8.5 SpiDropCLK
	8.6 SpiRaiseCLK
	8.7 SpiDropCS
	8.8 SpiRaiseCS
	8.9 SpiShiftReg
	8.10 SpiClockWait

	9. System Definitions
	9.1 Function Return Values
	9.2 nLoopsPerUsec Determination
	9.3 NLoopsPerUsec Estimated Values

